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Charge-neutral anion receptors can be constructed by decorating
organic scaffolds with hydrogen bond donor groups;H where
X is typically an oxygen or nitrogen atom. As the study of this
class of receptors intensifiéshere is increasing evidence that&
groups within the receptors also interact with the anion. This
evidence comes in the form of direct observation of close contacts
in both crystallographicand theoretical structurésas well as
chemical shifts in NMR specti:*41t is generally assumed that

although these €H contacts serve to provide increased stability, w C
their contribution to the overall bonding is much weaker than that 1(-9.02) 3 (-7.86)
provided by X-H contacts. In what follows, we show that this is
not necessarily true.
Electronic binding energiea\E, computed for complexes formed x
between hydrogen bond donors and acceptors provide a useful scale Z S
-

to assess the relative strengths of these interactions. For monoanions,
such as Cl and NG, the AE values for single hydrogen bonds
formed with X—H donors range between 10 and 30 kcal/ffol.

For example AE = —19.0 kcal/mol for a pyrrole CI~ complex°
andAE = —16.0 for a CHOH—NO3z~ complex® Much lowerAE
values of—2.7 and—3.1 kcal/mol have been reported for ¢H

S

Cl- and CH—NOs~, respectivelyf.” 5 (-7.50) 6 (-6.29)
Although this comparison oAE values supports the notion that

C—H is a weak donor, providing20% of X—H'’s binding power,

it must be noted that CHs one of the weakest members of this .

class of donors. The strength of the-8 hydrogen bond depends = v = =z =

on the acidity of the hydrogéet® In aliphatic systems, the -€H 2 'A‘: ."vj

acidity is appreciably enhanced by the presence of substituents that )

would stabilize the conjugate anion through inductive or resonance )
effects. As illustrated by the®e-H proton in peptides, when both Figure 1. Structures and\E values (kcal/mol) obtained after geometry

7 (-15.44) 8 (-16.03) 9(-1287)

ff h b h d optimization at the MP2/aug-cc-pVTZ level of theory. When the two
effects are present, the-&1 group becomes a much stronger donor, hydrogen bonds are not equivaleBf,3, and8, the weaker interaction is

yielding C*—H---O=C interactions that are more than half the indicated by the thinner dashed line.
strength of N-H---O=C hydrogen bond$.

Aryl C—H groups, such as those inlds, are appreciably more
acidic than those in alkanes. This is evident on comparison of gas- structure He-X, A D-++X, A D-H---X, deg H-+-0-A, deg

Table 1. Geometric Parameters for 1—9

phase proton affinities: CH + HT — CH,, —418 kcal/mol?a 1 2.69 3.45 126.8

CegHs~ + Ht — CgHg, —401 kcal/mol® It follows that GHe should 2 2.20,2.40 3.28,3.18 171.4,127.5 103.0, 142.0

form stronger anion complexes than those observed for. This 2 ggg 2.38 9?255 3.17 1%3(-)& 1285  105.2,146.0

hypqthe5|s is cons_lstent with prior theqretlcal and experimental 5 233 333 1523 02.4

studies of GHg—halide complexes that yield¢Hs—Cl~ complex 6 237 3.36 151.8 96.2

AE values of 7.9-10.4 kcal/molt® To further probe the nature of 7 2.12 3.09 168.8

such interactions, the geometries axi values for 1:1 complexes 8 186,232 280,297  161.2,1240  108.4,109.7
9 2.11 2.94 143.6 112.8

between @GHg and differently shaped anions, CNO;~, and CIQ,

were obtained via MP2/aug-cc-pVTZ calculatidA$:or compari-

son,AE values for 1:1 HO—anion complexes® were obtained at .

the same level of theory. both cases the shorter, and by inference stronger, hydrogen bond
The results, Figure 1 and Table 1, confirm thgtigforms stable @IS0 exhibits a more optimal ‘HO—A angle, where A= N or

complexes with these anions through hydrogen-bonding interactions.Cl-*> Complexes4—6 are less stable geometries in whicgHg

In the global minimal—3 two C—H groups contact each anion. interacts with the anion via a single-&1 donor. The Cf complex

The halide compled is symmetric with bent €H---Cl angles. 4is a local minimum. The oxyanion complexgand6, which are
The oxyanion complexe® and 3 are both asymmetric with one  not stable points on the potential surface, were obtained by imposing
short linear C-H---O bond and one long bent-¢H:--O bond. In C,, symmetry during the optimizations.
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Figure 2. Example of hydrogen bonding in a crystal where the only contacts
with the CIQ;~ anion involve C-H donor groups. In this case, there are 11
H:++O contacts<3.0 A14

The results verify that s is a significantly stronger €H donor
than CH, The latter donor forms complexes with a single' i€
group, and direct comparison of----anion bond strength is
possible only ford. In this case, a simple aryl-€H donor gives a
Cl~ complex,—8.6 kcal/mol, that is over 3 times more stable than
a simple alkyl G-H donor, —2.7 kcal/mol’@ Comparison ofAE
values for2 and5, —9.26 and—7.50 kcal/mol, with the Chkt-
NOs~ value,—3.1 kcal/moF also suggests a factor of 2 to 3 increase
in strength for the more acidic-€H---O contact. Finally, com-
parison of AE values forl—3 with those obtained for—9 show
that C-H hydrogen-bonding interactions withglds produce 1:1
complexes that are 581% as stable as the correspondingdH
complexes.

When compared with normal-XH donors, the relative strength
of these interactions suggests that aryli--anion hydrogen bonds
must play an important role in supramolecular chemistry. A search
of the Cambridge Structural Datab&sdor aryl C—H---anion

contacts between charge-neutral benzene rings bearing only hy-
drogen or carbon substituents and the anions examined herein
corroborates that such interactions are common. With the constraints

of H---anion distancex=3.0 A and G-H---anion angles> 150,
the search located 220 Céxamples, 62 N@ examples, and 256
ClO,~ examples. In several instances, such as that shown in Figure
2, C—H donor groups provide the only hydrogen bond-to-anion
contacts*

In summary, theoretical calculatioh$1%examination of crys-
tallographic data, and experimental binding enerdié&bsuggest
that even in the absence of electron-withdrawing substituents, simple
arenes form hydrogen bonds with anions that can exceed 50% of
the strength of those formed by-® and N-H groups. Thus, when
present in a receptor, even moderately acidieHCgroups could
considerably enhance anion binding affinity and they should be
considered as additional binding sites within the host cavity.
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